P5-Pod优先级抢占调度

1. 前言

前面的两篇文章中,已经讲过了调度pod的算法(predicate/priority),在kubernetes v1.8版本之后可以指定pod优先级(v1alpha1),若资源不足导致高优先级pod匹配失败,高优先级pod会转而将部分低优先级pod驱逐,以抢占低优先级pod的资源尽力保障自身能够调度成功,那么本篇就从代码的层面展开看一看pod抢占调度的逻辑。

2. 抢占调度入口

在P1-入口篇中我们找到了调度算法计算的入口,随后展开了调度算法的两篇解读,本篇我们再次回到此入口的位置,接着往下看:

pkg/scheduler/scheduler.go:457

func (sched *Scheduler) scheduleOne() {
    ... // 省略

  // 调度算法计算入口
    scheduleResult, err := sched.schedule(pod) 

    if err != nil {
        // schedule() may have failed because the pod would not fit on any host, so we try to
        // preempt, with the expectation that the next time the pod is tried for scheduling it
        // will fit due to the preemption. It is also possible that a different pod will schedule
        // into the resources that were preempted, but this is harmless.
        if fitError, ok := err.(*core.FitError); ok {
            if !util.PodPriorityEnabled() || sched.config.DisablePreemption {
                klog.V(3).Infof("Pod priority feature is not enabled or preemption is disabled by scheduler configuration." +
                    " No preemption is performed.")
            } else {
                preemptionStartTime := time.Now()
                sched.preempt(pod, fitError)  // 抢占调度逻辑入口
                metrics.PreemptionAttempts.Inc()
              ... // 省略
            metrics.PodScheduleFailures.Inc()
        } else {
            klog.Errorf("error selecting node for pod: %v", err)
            metrics.PodScheduleErrors.Inc()
        }
        return
    }

注释中可看出,若在筛选算法中并未找到fitNode且返回了fitError,那么就会进入基于pod优先级的资源抢占的逻辑,入口是sched.preempt(pod, fitError)函数。在展开抢占逻辑之前,我们先来看一看pod优先级是怎么一回事吧。

2.1. Pod优先级的定义

字面意义上来理解,pod优先级可以在调度的时候为高优先级的pod提供资源空间保障,若出现资源紧张的情况,则在其他约束规则允许的情况下,高优先级pod会抢占低优先级pod的资源。此功能在1.11版本以后默认开启,默认情况下pod的优先级是0,优先级值high is better,具体说明来看看官方文档的解释吧:

Pod Priority and Preemption

下面列举一个pod优先级使用的实例:

# Example PriorityClass
apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
  name: high-priority
value: 1000000
globalDefault: false
description: "This priority class should be used for XYZ service pods only."

# Example Pod spec
apiVersion: v1
kind: Pod
metadata:
  name: nginx
  labels:
    env: test
spec:
  containers:
  - name: nginx
    image: nginx
    imagePullPolicy: IfNotPresent
  priorityClassName: high-priority

了解了定义及如何使用,那我们来看看代码层面是如何实现的吧!

3. 抢占调度算法

从上面的入口跳转:

pkg/scheduler/scheduler.go:469 --> pkg/scheduler/scheduler.go:290

func (sched *Scheduler) preempt(preemptor *v1.Pod, scheduleErr error) (string, error) {
    preemptor, err := sched.config.PodPreemptor.GetUpdatedPod(preemptor)
    if err != nil {
        klog.Errorf("Error getting the updated preemptor pod object: %v", err)
        return "", err
    }
  // 通过默认注册的抢占算法,计算得出最终被执行抢占调度的node、node上需要驱逐的pod等信息
    node, victims, nominatedPodsToClear, err := sched.config.Algorithm.Preempt(preemptor, sched.config.NodeLister, scheduleErr)
    if err != nil {
        klog.Errorf("Error preempting victims to make room for %v/%v.", preemptor.Namespace, preemptor.Name)
        return "", err
    }
    var nodeName = ""
    if node != nil {
        nodeName = node.Name
        // Update the scheduling queue with the nominated pod information. Without
        // this, there would be a race condition between the next scheduling cycle
        // and the time the scheduler receives a Pod Update for the nominated pod.
    // 给调度队列内的preemptor pod加上提名node信息,避免下一个调度周期出现冲突
        sched.config.SchedulingQueue.UpdateNominatedPodForNode(preemptor, nodeName)

        // Make a call to update nominated node name of the pod on the API server.
    // 给待调度pod指定NominatedNodeName,pod.Status.NominatedNodeName = nodeName
        err = sched.config.PodPreemptor.SetNominatedNodeName(preemptor, nodeName)
        if err != nil {
            klog.Errorf("Error in preemption process. Cannot update pod %v/%v annotations: %v", preemptor.Namespace, preemptor.Name, err)
            sched.config.SchedulingQueue.DeleteNominatedPodIfExists(preemptor)
            return "", err
        }

        for _, victim := range victims {
      // 对node上需要驱逐的pod执行删除操作
            if err := sched.config.PodPreemptor.DeletePod(victim); err != nil {
                klog.Errorf("Error preempting pod %v/%v: %v", victim.Namespace, victim.Name, err)
                return "", err
            }
            sched.config.Recorder.Eventf(victim, v1.EventTypeNormal, "Preempted", "by %v/%v on node %v", preemptor.Namespace, preemptor.Name, nodeName)
        }
        metrics.PreemptionVictims.Set(float64(len(victims)))
    }
    // Clearing nominated pods should happen outside of "if node != nil". Node could
    // be nil when a pod with nominated node name is eligible to preempt again,
    // but preemption logic does not find any node for it. In that case Preempt()
    // function of generic_scheduler.go returns the pod itself for removal of the annotation.
  // 当找不到合适的抢占node时,可能是因为preemptor pod已经有了提名的node,但它又执行了一遍抢占逻辑,说明它
  // 在上一次调度周期中没有调度成功,因此,删除调度队列中比当前preemptor pod优先级更低的pod所指定的提名
  // node信息(pod.Status.NominatedNodeName)
    for _, p := range nominatedPodsToClear {
        rErr := sched.config.PodPreemptor.RemoveNominatedNodeName(p)
        if rErr != nil {
            klog.Errorf("Cannot remove nominated node annotation of pod: %v", rErr)
            // We do not return as this error is not critical.
        }
    }
    return nodeName, err
}

如优先级筛选算法一样,调度算法最终也是要挑选出一个供以实际运行抢占调度逻辑的node,那么一起来看看这个计算算法是怎么样的。如schedule()方法一样,preempt()的默认方法也在generic_scheduler.go这个文件中:

pkg/scheduler/core/generic_scheduler.go:288

将函数内拆成几个重要的部分,其余部分省略,逐个说明

func (g *genericScheduler) Preempt(pod *v1.Pod, nodeLister algorithm.NodeLister, scheduleErr error) (*v1.Node, []*v1.Pod, []*v1.Pod, error) {
    // ... 省略

  // 每次开始抢占调度之前,检查一下当前pod是否已经有了提名抢占调度的节点,且该节点上当前不包含正在终结中的pod,若pod已有提名调度节点,且该节点上已经有pod正在终结中,则视为已经在执行抢占的动作了,所以不再往下重复执行。可以自行进去查看,比较简单,不拿出来讲了。
    if !podEligibleToPreemptOthers(pod, g.nodeInfoSnapshot.NodeInfoMap) {
        klog.V(5).Infof("Pod %v/%v is not eligible for more preemption.", pod.Namespace, pod.Name)
        return nil, nil, nil, nil
    }
  // ... 省略

  // potentialNodes,找出潜在的可能进行抢占调度的节点,下方详解
    potentialNodes := nodesWherePreemptionMightHelp(allNodes, fitError.FailedPredicates)

  // ... 省略

  // pdb,pod Disruption Budget,是用来保障可用副本的一种功能,下方详解
    pdbs, err := g.pdbLister.List(labels.Everything())
    if err != nil {
        return nil, nil, nil, err
    }

  // 最重要的抢占算法入口,下方详解
    nodeToVictims, err := selectNodesForPreemption(pod, g.nodeInfoSnapshot.NodeInfoMap, potentialNodes, g.predicates,
        g.predicateMetaProducer, g.schedulingQueue, pdbs)
    if err != nil {
        return nil, nil, nil, err
    }

    // ... 省略

  // candidateNode,从所有提名的node中挑选一个真正执行抢占步骤
    candidateNode := pickOneNodeForPreemption(nodeToVictims)
    if candidateNode == nil {
        return nil, nil, nil, nil
    }

    // 返回3个值,分别是选中的node、node上将要驱逐的pod、调度队列中比当前pod优先级更低的pod
    nominatedPods := g.getLowerPriorityNominatedPods(pod, candidateNode.Name)
    if nodeInfo, ok := g.nodeInfoSnapshot.NodeInfoMap[candidateNode.Name]; ok {
        return nodeInfo.Node(), nodeToVictims[candidateNode].Pods, nominatedPods, nil
    }

    return nil, nil, nil, fmt.Errorf(
        "preemption failed: the target node %s has been deleted from scheduler cache",
        candidateNode.Name)
}

3.1. potentialNodes

第一步,先找出所有潜在的可能会参与抢占调度的node,何为潜在可能呢?意思是node调度此pod调度失败的原因并非"硬伤"类原因。所谓硬伤原因,指的是即使驱逐调几个pod,也无法改变此node无法运行这个pod的事实。这些硬伤包括哪些?来看看代码:

pkg/scheduler/core/generic_scheduler.go:306 -> pkg/scheduler/core/generic_scheduler.go:1082

func nodesWherePreemptionMightHelp(nodes []*v1.Node, failedPredicatesMap FailedPredicateMap) []*v1.Node {
    potentialNodes := []*v1.Node{}
    for _, node := range nodes {
        unresolvableReasonExist := false
        failedPredicates, _ := failedPredicatesMap[node.Name]
        // If we assume that scheduler looks at all nodes and populates the failedPredicateMap
        // (which is the case today), the !found case should never happen, but we'd prefer
        // to rely less on such assumptions in the code when checking does not impose
        // significant overhead.
        // Also, we currently assume all failures returned by extender as resolvable.
        for _, failedPredicate := range failedPredicates {
            switch failedPredicate {
            case
        // 下面所有的failedPredicates,都视为"硬伤",因此若相应的节点上若出现下面的失败原因之一,则视为该node不可参与抢占调度。
                predicates.ErrNodeSelectorNotMatch,
                predicates.ErrPodAffinityRulesNotMatch,
                predicates.ErrPodNotMatchHostName,
                predicates.ErrTaintsTolerationsNotMatch,
                predicates.ErrNodeLabelPresenceViolated,
                // Node conditions won't change when scheduler simulates removal of preemption victims.
                // So, it is pointless to try nodes that have not been able to host the pod due to node
                // conditions. These include ErrNodeNotReady, ErrNodeUnderPIDPressure, ErrNodeUnderMemoryPressure, ....
                predicates.ErrNodeNotReady,
                predicates.ErrNodeNetworkUnavailable,
                predicates.ErrNodeUnderDiskPressure,
                predicates.ErrNodeUnderPIDPressure,
                predicates.ErrNodeUnderMemoryPressure,
                predicates.ErrNodeUnschedulable,
                predicates.ErrNodeUnknownCondition,
                predicates.ErrVolumeZoneConflict,
                predicates.ErrVolumeNodeConflict,
                predicates.ErrVolumeBindConflict:
                unresolvableReasonExist = true
                break
            }
        }
        if !unresolvableReasonExist {
            klog.V(3).Infof("Node %v is a potential node for preemption.", node.Name)
            potentialNodes = append(potentialNodes, node)
        }
    }
    return potentialNodes
}

3.2. Pod Disruption Budget(pdb)

这种资源类型本人没有实际应用过,查阅了一下官方的手册,实际上它也是kubernetes设计的一种抽象资源,主要用作面对主动中断时,保障副本可用数量的一种功能,与deployment的maxUnavailable不一样,maxUnavailable是在滚动更新(非主动中断)时用来保障,pdb通常是面对主动中断的场景,例如删除pod,drain node等主动操作,更多详细说明参考官方的手册:

Specifying a Disruption Budget for your Application

资源实例:

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  name: zk-pdb
spec:
  minAvailable: 2
  selector:
    matchLabels:
      app: zookeeper
$ kubectl get poddisruptionbudgets
NAME      MIN-AVAILABLE   ALLOWED-DISRUPTIONS   AGE
zk-pdb    2               1                     7s


$ kubectl get poddisruptionbudgets zk-pdb -o yaml
apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  creationTimestamp: 2017-08-28T02:38:26Z
  generation: 1
  name: zk-pdb
...
status:
  currentHealthy: 3
  desiredHealthy: 3
  disruptedPods: null
  disruptionsAllowed: 1
  expectedPods: 3
  observedGeneration: 1

为什么这个资源相关的逻辑会出现在抢占调度里面呢?因为设计者将pod抢占造成的低优先级pod驱逐动作视为主动中断,有了这一层理解,我们接着往下。

3.3. nodeToVictims

selectNodesForPreemption()函数很重要,这个函数将会返回所有可行的node驱逐方案

pkg/scheduler/core/generic_scheduler.go:316 selectNodesForPreemption --> pkg/scheduler/core/generic_scheduler.go:916

func selectNodesForPreemption(pod *v1.Pod,
    nodeNameToInfo map[string]*schedulernodeinfo.NodeInfo,
    potentialNodes []*v1.Node,
    fitPredicates map[string]predicates.FitPredicate,
    metadataProducer predicates.PredicateMetadataProducer,
    queue internalqueue.SchedulingQueue,
    pdbs []*policy.PodDisruptionBudget,
) (map[*v1.Node]*schedulerapi.Victims, error) {
  // 返回的结构体,类型是map,key是*v1.Node,value是一个结构体,包含两个元素:node上待驱逐的pod信息和将会违反PDB规则的次数
    nodeToVictims := map[*v1.Node]*schedulerapi.Victims{}
    var resultLock sync.Mutex

    // We can use the same metadata producer for all nodes.
    meta := metadataProducer(pod, nodeNameToInfo)
    checkNode := func(i int) {
        nodeName := potentialNodes[i].Name
        var metaCopy predicates.PredicateMetadata
        if meta != nil {
            metaCopy = meta.ShallowCopy()
        }
    // selectVictimsOnNode()是核心计算的函数
        pods, numPDBViolations, fits := selectVictimsOnNode(pod, metaCopy, nodeNameToInfo[nodeName], fitPredicates, queue, pdbs)
        if fits {
            resultLock.Lock()
            victims := schedulerapi.Victims{
                Pods:             pods,
                NumPDBViolations: numPDBViolations,
            }
            nodeToVictims[potentialNodes[i]] = &victims
            resultLock.Unlock()
        }
    }
  // 熟悉的并发控制模型
    workqueue.ParallelizeUntil(context.TODO(), 16, len(potentialNodes), checkNode)
    return nodeToVictims, nil
}

上面已在代码中对重要部分进行注释,不难发现,重要的计算函数是selectVictimsOnNode()函数,每个node所需要驱逐的pod,以及违反PDB规则次数信息,都由此函数来计算返回,最终组成nodeToVictims这个map,返回给上层调用函数。所以,接着来看selectVictimsOnNode()函数是怎么运行的。

selectVictimsOnNode

func selectVictimsOnNode(
    pod *v1.Pod,
    meta predicates.PredicateMetadata,
    nodeInfo *schedulernodeinfo.NodeInfo,
    fitPredicates map[string]predicates.FitPredicate,
    queue internalqueue.SchedulingQueue,
    pdbs []*policy.PodDisruptionBudget,
) ([]*v1.Pod, int, bool) {
    if nodeInfo == nil {
        return nil, 0, false
    }

  // 潜在的受害者(pod),按优先级排序的有序list,高优先级的排序靠前,低优先级的排序靠后
    potentialVictims := util.SortableList{CompFunc: util.HigherPriorityPod}
  // 在实际调度之前,所有的资源的考量计算都只能是预估,因此不能实际实施到node上,所以,基于node的元数据进行一个复制,将node信息的复制样本来参与计算,最终计算得到正确的结果后才会考虑实际往node上实施。
    nodeInfoCopy := nodeInfo.Clone()

  // 基于node复制样本,假设减去一个pod之后,复制样本重新计算得到的数据。例如node a上运行着有若干pod,假设减去了其上的pod1,pod1 request的内存是4Gi,那么可假设node可分配的内存就多了4Gi
    removePod := func(rp *v1.Pod) {
        nodeInfoCopy.RemovePod(rp)
        if meta != nil {
            meta.RemovePod(rp)
        }
    }

  // 基于node复制样本,假设加上一个pod之后,复制样本重新计算得到的数据。
    addPod := func(ap *v1.Pod) {
        nodeInfoCopy.AddPod(ap)
        if meta != nil {
            meta.AddPod(ap, nodeInfoCopy)
        }
    }

  // 首先,枚举出node上所有的低于待调度pod优先级的pod,并将它们加入潜在受害者potentialVictims,计算假设剔出它们后,node上现有的资源信息
    podPriority := util.GetPodPriority(pod)
    for _, p := range nodeInfoCopy.Pods() {
        if util.GetPodPriority(p) < podPriority {
            potentialVictims.Items = append(potentialVictims.Items, p)
            removePod(p)
        }
    }
    potentialVictims.Sort()

  // 第二步,判断待调度pod是否fit此node,主要是亲和性方面的考量,这个podFitsOnNode函数前面筛选算法已经讲过了,这里不再复述,这个函数通过后,会把待调度pod的request资源加入nodeInfoCopy内。
    if fits, _, err := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, queue, false); !fits {
        if err != nil {
            klog.Warningf("Encountered error while selecting victims on node %v: %v", nodeInfo.Node().Name, err)
        }
        return nil, 0, false
    }
    var victims []*v1.Pod
    numViolatingVictim := 0

  // 第三步,将前面枚举出的低优先级的pod有序list,拆分为两个有序list,一个是违反了PDB规则的(pdb.Status.PodDisruptionsAllowed <= 0,这个值等于0则代表理论上要求不能出现中断的pod副本),一个是不违反PDB规则的。
    violatingVictims, nonViolatingVictims := filterPodsWithPDBViolation(potentialVictims.Items, pdbs)

  // 第四步,前面枚举假设把所有的低优先级pod都剔除了,但实际上可能不用剔除这么多,因此,保证了待调度pod计算进来之后,这里再用贪心法将低优先级的pod按优先级排序尽可能多地加入回来,最终无法调度的pod,才归为实际驱逐的pod。显而易见的是,优先保障有PDB约束的pod。
    reprievePod := func(p *v1.Pod) bool {
        addPod(p)
        fits, _, _ := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, queue, false)
        if !fits {
            removePod(p)
            victims = append(victims, p)
            klog.V(5).Infof("Pod %v/%v is a potential preemption victim on node %v.", p.Namespace, p.Name, nodeInfo.Node().Name)
        }
        return fits
    }
    for _, p := range violatingVictims {
        if !reprievePod(p) {
            numViolatingVictim++
        }
    }
    // Now we try to reprieve non-violating victims.
    for _, p := range nonViolatingVictims {
        reprievePod(p)
    }
  // 第五步,返回最终node的运算结果,分别是驱逐的pod list,以及驱逐的数量
    return victims, numViolatingVictim, true
}

这个函数分5步,先是枚举出所有的低优先级pod,再贪心保障尽量多的pod能正常运行,从而计算出最终需要被驱逐的pod及相关信息,详见代码内注释。

3.4. candidateNode

上面函数返回每一个可抢占的node各自的抢占方案后,这里就需要筛选其中一个node来实际执行抢占调度操作。

pkg/scheduler/core/generic_scheduler.go:330 pickOneNodeForPreemption() --> pkg/scheduler/core/generic_scheduler.go:809

func pickOneNodeForPreemption(nodesToVictims map[*v1.Node]*schedulerapi.Victims) *v1.Node {
    if len(nodesToVictims) == 0 {
        return nil
    }
    minNumPDBViolatingPods := math.MaxInt32
    var minNodes1 []*v1.Node
    lenNodes1 := 0
    for node, victims := range nodesToVictims {
        if len(victims.Pods) == 0 {
          // 可能在调度的过程中,有极小的概率某个node上有pod终结了,使node上不再有需要驱逐的pod,那么pod可直接调度到该node上
            return node
        }
        // 按违反PDB约束的次数排序,越少的node优先级越高,若最大优先级的node只有一个,则直接返回违反次数最小的node,若有多个,则进入下一步筛选
        numPDBViolatingPods := victims.NumPDBViolations
        if numPDBViolatingPods < minNumPDBViolatingPods {
            minNumPDBViolatingPods = numPDBViolatingPods
            minNodes1 = nil
            lenNodes1 = 0
        }
        if numPDBViolatingPods == minNumPDBViolatingPods {
            minNodes1 = append(minNodes1, node)
            lenNodes1++
        }
    }
    if lenNodes1 == 1 {
        return minNodes1[0]
    }

    // 按node上需驱逐的第一个pod(即需驱逐的优先级最高的pod)的优先级大小排序,pod[0]优先级越小,则所属的node优先级越高,若最大优先级的node只有一个,则直接返回此node,若有多个,则进入下一步筛选
    minHighestPriority := int32(math.MaxInt32)
    var minNodes2 = make([]*v1.Node, lenNodes1)
    lenNodes2 := 0
    for i := 0; i < lenNodes1; i++ {
        node := minNodes1[i]
        victims := nodesToVictims[node]
        // highestPodPriority is the highest priority among the victims on this node.
        highestPodPriority := util.GetPodPriority(victims.Pods[0])
        if highestPodPriority < minHighestPriority {
            minHighestPriority = highestPodPriority
            lenNodes2 = 0
        }
        if highestPodPriority == minHighestPriority {
            minNodes2[lenNodes2] = node
            lenNodes2++
        }
    }
    if lenNodes2 == 1 {
        return minNodes2[0]
    }

    // 按node上需驱逐的所有的pod的优先级总和计算,总和越小,node优先级越高,若最大优先级的node只有一个,则直接返回此node,若有多个,则进入下一步筛选
    minSumPriorities := int64(math.MaxInt64)
    lenNodes1 = 0
    for i := 0; i < lenNodes2; i++ {
        var sumPriorities int64
        node := minNodes2[i]
        for _, pod := range nodesToVictims[node].Pods {
            // We add MaxInt32+1 to all priorities to make all of them >= 0. This is
            // needed so that a node with a few pods with negative priority is not
            // picked over a node with a smaller number of pods with the same negative
            // priority (and similar scenarios).
            sumPriorities += int64(util.GetPodPriority(pod)) + int64(math.MaxInt32+1)
        }
        if sumPriorities < minSumPriorities {
            minSumPriorities = sumPriorities
            lenNodes1 = 0
        }
        if sumPriorities == minSumPriorities {
            minNodes1[lenNodes1] = node
            lenNodes1++
        }
    }
    if lenNodes1 == 1 {
        return minNodes1[0]
    }

    // 按node上需驱逐的所有的pod数量计算,数量越少,node优先级越高,若最大优先级的node只有一个,则直接返回此node,若有多个,则进入下一步筛选
    minNumPods := math.MaxInt32
    lenNodes2 = 0
    for i := 0; i < lenNodes1; i++ {
        node := minNodes1[i]
        numPods := len(nodesToVictims[node].Pods)
        if numPods < minNumPods {
            minNumPods = numPods
            lenNodes2 = 0
        }
        if numPods == minNumPods {
            minNodes2[lenNodes2] = node
            lenNodes2++
        }
    }
    // 若经过上面四个步骤的筛选,筛选出的node还是不止一个,那么就挑选其中的第一个作为最后选中被执行抢占调度的node
    if lenNodes2 > 0 {
        return minNodes2[0]
    }
    klog.Errorf("Error in logic of node scoring for preemption. We should never reach here!")
    return nil
}

上面代码结合注释,可以归纳出,这个函数中做了非常细致地检查,最高分如下4个步骤来对node进行优先级排序,筛选出一个最终合适的node来被执行抢占调度pod的操作:

1.按违反PDB约束的次数排序

2.按node上需驱逐的第一个pod(即需驱逐的优先级最高的pod)的优先级大小排序

3.按node上需驱逐的所有的pod的优先级总和计算排序

4.按node上需驱逐的所有的pod数量计算排序

5.若经过上面四个步骤的筛选,筛选出的node还是不止一个,那么就挑选其中的第一个作为最后选中node

4. 总结

抢占调度的逻辑可以说是非常细致和精彩,例如

1.从资源计算的角度:

  • 基于nodeInfo快照的计算,所有计算在最终确定实施之前都是预计算
  • 先枚举出所有低优先级的pod,保障待调度pod能充分获取资源
  • 在待调度pod能运行后,再尽力保障最多的低优先级pod能同时运行

2.从node选取的角度:

  • 分4个步骤筛选以选出驱逐造成影响最小一个node

本章完,感谢阅读!

results matching ""

    No results matching ""